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ABSTRACT
When populations are separated for long periods and then brought into contact for a brief episode in

part of their range, this can result in genetic admixture. To analyze this type of event we considered a
simple model under which two parental populations (P1 and P2) mix and create a hybrid population (H).
After that event, the three populations evolve under pure drift without exchange during T generations.
We developed a new method, which allows the simultaneous estimation of the time since the admixture
event (scaled by the population size t i � T/Ni, where Ni is the effective population size of population i)
and the contribution of one of two parental populations (which we call p 1). This method takes into
account drift since the admixture event, variation caused by sampling, and uncertainty in the estimation
of the ancestral allele frequencies. The method is tested on simulated data sets and then applied to a
human data set. We find that (i) for single-locus data, point estimates are poor indicators of the real
admixture proportions even when there are many alleles; (ii) biallelic loci provide little information about
the admixture proportion and the time since admixture, even for very small amounts of drift, but can be
powerful when many loci are used; (iii) the precision of the parameters’ estimates increases with sample
size (n � 50 vs. n � 200) but this effect is larger for the t i’s than for p 1; and (iv) the increase in precision
provided by multiple loci is quite large, even when there is substantial drift (we found, for instance, that
it is preferable to use five loci than one locus, even when drift is 100 times larger for the five loci). Our
analysis of a previously studied human data set illustrates that the joint estimation of drift and p 1 can
provide additional insights into the data.

DURING their history, populations can be separated has also been quite common during the process of do-
mestication and the creation of new breeds.for long periods and then brought into contact

for a brief episode in part of their range, resulting in The interest for admixture estimation and admixed
populations thus ranges from evolutionary to more ap-genetic admixture (Bernstein 1931; Chakraborty

1986). This process is frequent in human populations plied issues. The study of admixed populations can pro-
vide information on (i) the inheritance of complex ge-where movements have brought together populations

that were historically separated for varying amounts of netic disease and, in particular, the mapping of the genes
involved (Chakraborty and Weiss 1988; McKeigue ettime. This can be seen, for instance, in South America

where many groups are essentially mixed populations al. 2000). In biogeography it could (ii) help identify
the relative contributions of different glacial refugia tocontaining varying amounts of contributions from Euro-

pean, African, and native American stocks (e.g., Rob- current populations. In conservation biology it could
also (iii) help define which source populations, and inerts and Hiorns 1965; Chakraborty 1986). Admix-

ture occurs widely and in many species and has certainly which proportion, should be used when reintroduction
programs are defined.taken place a great many times since the last glaciations

when populations expanded from different refugia Even though one could use admixture methods to
estimate the relative contributions of subspecies meet-(Taberlet et al. 1998; Hewitt 2000). On a smaller time

scale, humans have caused extensive admixture through ing in hybrid zones, it is important to stress that the
studies of hybrid zones and of admixed populations aretransfers of plants and animals, both inadvertently (as
often quite different. Whereas hybrid zone studies dealin the case of commensal species) and deliberately (as
with spatial phenomena, admixture studies usually dis-in restocking of rivers with nonnative fishes). Admixture
regard this aspect and concentrate on the estimation
of admixture proportions (see, for instance, Goodman
et al. 1999 for an example where the difference is ana-
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the ability to use genetic information from present-day lelic loci (similar to many allozymes) or 10-allele loci
(similar to microsatellite or mtDNA data). Finally, wepopulations to draw inferences about past demographic

events (e.g., Slatkin and Hudson 1991; Rogers and applied the method to a published human data set.
Harpending 1992; Wilson and Balding 1998; Beau-
mont 1999). The coalescent theory (Kingman 1982a,b)

METHODSprovided population geneticists with both a statistical
framework and a simple way to simulate samples taken The model: The admixture model shown in Figure
from populations evolving under different demo- 1 assumes that two independent parental populations,
graphic models (Hudson 1990). However, until a few P1 and P2, of size N1 and N2, mixed some time T in the
years ago, all coalescent-based methods were applied to past (measured in generations) with respective propor-
summary statistics. In practice, the coalescent theory tions p 1 and p 2 (� 1 � p 1), creating a hybrid population
was used to simulate genealogical trees under different H of size Nh. At the time of hybridization, the gene
demographic models and the simulated data sets were frequency distributions of P1 and P2 are, respectively,
used to estimate the distribution of an appropriate statis- the two vectors x 1 and x 2, and that of the hybrid popula-
tic (nA, the number of alleles, He, the expected heterozy- tion is p 1x 1 � p 2x 2. After admixture, P1, P2, and H evolve
gosity, etc.). Although powerful, these methods were independently (with no migration) by pure drift (no
criticized because they do not make full use of the ge- mutations) until the present time. Even though T, the
netic information present in the allelic distribution time since admixture (in generations) is the same for
(Felsenstein 1992). Clearly, any method based on a the three populations, the time scaled by the effective
transformation of the original data can lead to a loss of size of each population can be different for the three
information and should therefore be less powerful than populations and is thus called t 1 � T/N1, t 2 � T/N2,methods that use the probability of observing the exact and t h � T/Nh. The parameters of the model are thus
sample configurations (i.e., the likelihood of the sam- p 1, t 1, t 2, t h, x 1, x 2. Note that Thompson (1973) analyzed
ple). This is particularly relevant for genetic data where the same model using a Brownian motion approxima-
the information available is inherently limited due to tion to represent drift.
correlation between the data points. A Bayesian approach: We are interested in making

One could naively use coalescent-based simulations inferences about a parameter (or a set of parameters)
to estimate how often a particular allelic configuration

� of a statistical model by using the information pro-
is observed. Practically, however, this is not possible vided by the observation of the data, D. This is given by
because the number of possible genealogies becomes a probability density function (pdf), which describes the
astronomical very quickly. As a consequence, even for probability distribution of � given the data p(�|D). We
moderate sample sizes (n � 10), the likelihood is impos- can use Bayes’ theorem to write
sible to evaluate by direct simulation. One could also
consider using an analytical approach to derive an ex-

p(�|D) �
p(�)p(D|�)

p(D)
. (1)pression for the likelihood. Unfortunately, this expres-

sion is practically impossible to solve as soon as the
The first term is the pdf of � before the data are ob-number of alleles and the sample size become large (see,
tained and is therefore called the prior as opposed tohowever, methods). Griffiths and Tavaré (1994) and
p(�|D), which is the posterior. Practically, p(�) summa-Kuhner et al. (1995) were the first to propose solutions
rizes our belief, knowledge, or lack of knowledge aboutto this problem using Monte Carlo methods.
�. The second term represents the probability of observ-In this article, we apply a full-likelihood and coales-
ing the data under the statistical model. Seen as a func-cent-based approach to the admixture problem. We de-
tion of �, p(D|�) (� L(�)) is the likelihood functionrive the likelihood function and compare results from
(Edwards 1972). The last term represents the probabil-this analytical approach with approximations obtained
ity of the data. It is often impossible to evaluate but isusing the method of Griffiths and Tavaré (1994). We
a constant given the data. As a consequence, this termdemonstrate the advantage of the latter. To integrate
can be ignored and we need only to know p(�|D) upover nuisance parameters in the model (such as the
to this multiplicative constant. When � is a set of param-ancestral gene frequencies), we then use the Metropolis-
eters, we can obtain the distribution of any specific pa-Hastings algorithm (a step for which there are no ana-
rameter by averaging across all others, and this is calledlytical results). Because of the large amount of time
the marginal pdf.required, most previous full-likelihood (Bayesian) meth-

By taking a Bayesian (or full-likelihood) approach weods were tested on small data sets (usually one popula-
consider that all relevant information about the parame-tion, sample size �50). In this study we chose to simulate
ter(s) is contained in the posterior pdf, and we are thusdata sets that are closer to those currently available (i.e.,
interested in the complete distribution rather than intotal sample sizes � 150 and 600, see below). We tested
point estimates. However, summary statistics such asthe performance of our method on a wide range of

parameters for both sample sizes and with either bial- point estimates can convey convenient information
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Figure 1.—The admixture model. We assume
a single admixture event, T generations ago (see
text). The three populations are allowed to have
different sizes N1, N2, and Nh. The contribution
of parental population 1 is p 1.

about the pdf for comparison and are provided as well. function p(D | p 1, t 1, t 2, t h, x 1, x 2) can be written as (see
O’Ryan et al. 1998 for details)For instance, the standard deviation (SD) is given when

useful because it is a commonly used measure of disper-
p(D|p1, t1, t2, th, x1, x2) � p(a1, a2, ah|p1, t1, t2, th, x1, x2)sion. However, dispersion is better described using the

width between the 5 and 95% quantiles. This is often � �
c1,c2,ch

�
f1,f2,fh

ABC, (2)
referred to as the 95% credible or equal-tail probability
interval (CI or ETPI, respectively). To avoid confusion

wherewith the 95% confidence interval we use ETPI. For approx-
imately symmetric distributions, using the mean, the A � p(a 1|f 1)p(a 2|f2)p(ah|fh)
median, or the mode provides very similar results. How-

B � p(c1|t 1, n1)p(ch|t h, nh)p(c2|t 2, n2)ever, for distributions that are highly skewed toward
small values, the mode can be very difficult to estimate. C � p( f 1|x 1, c1)p( f h|p1x 1 � (1 � p 1)x 2, ch)p( f 2|x 2, c2).
This proved particularly true for the t i’s. We therefore

a 1, a 2, and ah are the sample frequency counts in present-decided to use the median that is the most widely used
day samples of P1, P2, and H; f 1, f2, and fh are the founderpoint estimate (see Gelman et al. 1995 for further discus-
frequency counts in P1, P2, and H; c 1, c 2, and c h are thesions on the choice of a point estimator), keeping in
number of coalescences in the genealogical history; andmind that it is the full posterior pdf that we regard as
n1, n2, and nh are the sample sizes of P1, P2, and H.relevant.

The first term (A) was first derived by Slatkin (1996)The Bayesian procedure requires that we provide a
for two alleles and by Nielsen et al. (1998) for anyprior on all parameters of the model. Although this step
number of alleles (Equation 9; see also O’Ryan et al.may be difficult in some problems, since it involves some
1998 for an independent derivation) and represents thesubjectivity (Gelman et al. 1995), a lack of knowledge
probability of observing a particular allelic configura-can be represented by a flat prior so that the posterior
tion in a sample given the allelic configuration of thewill in fact be proportional to the likelihood function.
founders just after admixture. The second term wasBecause of this, we also use the term likelihood for
derived by Tavaré (1984, Equation 6.1) and representsposterior pdf in some circumstances. We chose flat pri-
the probability of observing ci coalescence events givenors for p 1, t 1, t 2, and t h. For x 1 and x 2, we chose a prior
the time (scaled by the effective size) since admixturein which all possible allele frequencies have equal proba-
and the sample sizes. Finally, the third term is specificbility; this is given by a uniform Dirichlet distribution.
to our model and represents the probability of the allelicThis choice has the advantage of making no specific
configuration in the founders [the sample size of whichassumption on how genetically distant the parental pop-
is given by ni � c i for i � {1, 2, h}] given the alleliculations are and thereby encompasses any possible his-
distribution in the ancestral parental population andtory of the parental populations.
the amount of admixture. The summation is over theThe full likelihood: However, the posterior p(p 1, t 1,
number of coalescent events in the genealogy of eacht 2, t h, x 1, x 2 | D) [corresponding to p(�|D) in Equation

1] is not available in a closed form. The likelihood population, which determines the size of the sample of
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founder lineages, and the number of different fre-
quency counts for each sample of this size. p(Sk�1|Sk) �

(nAi�1)
(k�m)

if Sk�1 � Sk � Ai, i � 1 . . . m

� 0 otherwiseIt is, however, computationally expensive to estimate (6)
this likelihood directly, because the number of allelic

(Griffiths and Tavaré 1994; O’Ryan et al. 1998),configurations among the founders that is compatible
where m is the number of allelic types, Ai is the ithwith the data can be very large. An alternative approach
allele, nAi is the number of Ai alleles in the currentis therefore to use sampling methods to estimate the
state, and Sk � Ai means that the allelic configurationlikelihood. Equation 2 can be rewritten in a more gen-
is identical to Sk apart from the fact that nAi is reducederal form as
by 1. The waiting time until the next coalescent event

p(D|�) � �G,c
p(D|G) p(G|c) p(c|�)dGdc, (3) is sampled from an exponential distribution (Kingman

1982a,b; Hudson 1990). The equivalent probability un-
where G represents all possible genealogies and consists der the coalescent model for each step in the chain is
of a sequence of c coalescent events going back from (nAi � 1)/(k � 1), and therefore p(G|c)/p*(G|c) can be
time 0 to time T and where the allele frequency count obtained by multiplying at each step the ratio of these
among the lineages is recorded at each event. Following quantities, (k � m)/(k � 1). In our model, the chain
the notation of Stephens and Donnelly (2000), the stops when the cumulative coalescence times become
integral denotes summation over all numbers of coales- greater than the time of the admixture event. The state
cent events and allelic configurations at each coalescent at that time represents the allelic configuration among
event. This rewriting becomes helpful because it is possi- the founder lineages and is a random draw from the
ble to sample from p(G|c)p(c|�) using standard meth- ancestral frequencies of the parental populations.
ods of simulation from the coalescent (Hudson 1990). Therefore, to have an estimate of the likelihood of the
From the standard theory of Monte Carlo sampling (e.g., sample, it is then necessary to multiply the final probabil-
Ripley 1987) we can then estimate (3) as the average ity [the �(k � m)/(k � 1)] by the probability of observ-
of p(D|G) for each realized G. Unfortunately p(D|G) will ing this founding state, which is a multinomial draw
be 0 for most realized G. To circumvent this problem we from the ancestral parental frequencies. If a chain has
used the method introduced by Griffiths and Tavaré more coalescent events than n � k (i.e., giving rise to
(1994), which proved extremely efficient in analyzing fewer than k founders), p(G | �) � 0 by construction.
the case of pure drift (O’Ryan et al. 1998; Beaumont This chain is run a reasonably large number of times
and Bruford 1999; Ciofi et al. 1999; see also Felsen- and the likelihood is averaged across these runs. A com-
stein et al. 1999 for a review). parison of simulated vs. analytical results on small data

The method of Griffiths and Tavaré: To circumvent sets and comparing results obtained with different num-
the problem of analyzing all possible genealogies and bers of runs on larger data sets shows that 500 runs is
allelic configurations, Griffiths and Tavaré (1994) large enough to estimate the likelihood when drift only
used a Monte Carlo approach to evaluate the likelihood is considered (see appendix and O’Ryan et al. 1998).
at specific parameter values; as noted by Felsenstein To summarize, the method of Griffiths and Tavaré
et al. (1999) this is equivalent to importance sampling allows us to calculate the likelihood p(D | p 1, t 1, t 2, t h,
(IS; see Ripley 1987). In this approach (see Stephens x 1, x 2) for specific values of p 1, t 1, t 2, t h, x 1, and x 2. Since
and Donnelly 2000 for extensive discussion) Equation we are interested in obtaining the posterior distribution
3 can be rewritten as p(p 1, t 1, t 2, t h, x 1, x 2 | D) [equivalent to p(�|D) in Equa-

tion 1] and, in particular, some of the marginals such
as p(p 1 | D), we need a method to sample from thep(D|�) � �G,c

p(D|G)
p(G|c)
p*(G|c)p*(G|c)p(c|�)dGdc. (4)

posterior distribution. Markov chain Monte Carlo
(MCMC) is a sampling-based method that enables usThus (2) as can be approximated by simulating K times
to do so.from p*(G|c)p(c|�) and estimating (4) as

Markov chain Monte Carlo methodology: In Monte
Carlo simulations, samples Xi (i � 1 . . . n) of a random

p(D|�) �
1
K �

1...K
p(D|G)

p(G|c)
p*(G|c) (5) variable X are drawn from a distribution �(.) and then

used to evaluate functions of X. When the distribution
for all realized G and c. In fact, the scheme of Griffiths of interest is impossible to evaluate either because no
and Tavaré always guarantees that p(D|G) � 1, because closed form is known or because it is difficult to sample
the genealogical history is constructed backward from from, it is possible to construct a Markov chain having
the data as described below. �(.) as its equilibrium distribution. One method to do

More specifically, the G and c are sampled according so is by using the Metropolis-Hastings algorithm (Met-
to the following scheme. If we call Sk the state with k ropolis et al. 1953; Hastings 1970), which is described
lineages, the state Sk�1 is chosen (going backward in here. If we call Xt the current state of a Markov chain

in the parameter space defined by the model of interest,time) according to the transition probabilities
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the algorithm requires that we first choose a candidate
for the next step of the chain, Xt�1, by using a proposal
distribution q(.|Xt). The chain then moves from state Xt

to the candidate Xt�1 with probability

� � min�1,
�(Xt�1)q(Xt/Xt�1)
�(Xt)q(Xt�1/Xt)

�. (7)

Note that we need only to be able to estimate �(.) at
some specific values and up to a multiplicative constant
(i.e., provided by the IS scheme above). If the candidate
state is not accepted the chain remains in its current
state and a new candidate state is randomly chosen from
the proposal distribution. Provided that some condi-
tions are met (irreducibility of the chain; e.g., Roberts
1996), the proposal distribution q(.|Xt) is to a large ex-
tent unimportant and the chain will sample from �(.)
once equilibrium is reached. Practically the choice of
q(.|Xt) is crucial if one wants the chain to reach equilib-
rium in a reasonable amount of time (see below). We
applied the MCMC algorithm to the parameter space
defined by our admixture model, i.e., p 1, t 1, t 2, t h, x 1,
and x 2.

Different proposal (or updating) distributions were
tested during the development of the method. We fi-
nally updated p 1 by taking a normal random deviate
around p 1 with a standard deviation 0.05. We also found
it efficient to update p 1 10% of the time rather than at
every step. The other parameters were updated the rest
of the time. A lognormal distribution with mean t i and
standard deviation s � 1/2√3nloc on a log scale was used
for t 1, t 2, and t h, where n loc is the number of loci. The
ancestral parental allelic frequencies were updated by

Figure 2.—Convergence of the MCMC for p 1 and t h. Thefirst selecting an allele at random, thus defining a parti-
results of 10 runs are presented for n � 200 and for the twotion of two sets of alleles: the allele itself and all the
extreme values of t i (� 0.001 and 0.1) used in the simulations.others. A 	-distribution with parameters v and w was Each curve represents the posterior pdf for 1 run. The curves

then used to update the chosen allele frequency. v was are close enough to suggest that equilibrium is reached in all
chosen to be 1 while 1/(1 � w) was equated to the cases. The values of the Gelman convergence statistic were all

between 1.01 and 1.06 for all parameters (see text). The pdf’ssmallest frequency of the partition (see Appendix in
are obtained using the locfit package for R. The vertical dashedCiofi et al. 1999).
lines represent the values of the parameter with which the

Testing for convergence and analysis of the output: data were simulated. (a) pdf ’s of p 1 for t i � 0.001; (b) pdf ’s
A key issue in MCMC simulation is to determine when of t h for t i � 0.001; (c) pdf ’s of p 1 for t i � 0.1; (d) pdf ’s of

t h for t i � 0.1.equilibrium has been reached, i.e., when to stop the
simulation to have a reasonable approximation of the
posterior or likelihood curve. This is a serious problem,
since even very long runs that appear to have converged 
1.1 (i.e., when the variance between chains is 
 �5%
may in fact be misleading (see Stephens and Donnelly that observed within chains) are a good indication that
2000 for examples). A number of diagnostic methods equilibrium is reached (see Beaumont 1999).
have been proposed (reviewed by Brooks and Gelman We ran 10 independent chains for independent loci
1998), which rely on running either a number of short for each of the three tested values of t i. This was done
chains each with starting points widely dispersed within for loci with 10 alleles and a sample size of 200 genes
the parameter space (Gelman et al. 1995) or one very per population (see next paragraph for the exact proce-
long chain (Raftery and Lewis 1996). We used the dure). In all cases, we found that running the chain for
former method, which is based on the analysis of the 50,000 steps was enough to produce values of the statistic
variance observed for each parameter within (Vw) and 
1.1 (see Figure 2, which represents 10 runs for p 1 and
between (Vb) the chains. This is done by computing t h for t i � 0.001 and t i � 0.1). We did not need to repeat

the diagnostic analysis for the smaller sample size (n �√(Vb � Vw)/Vw. Gelman et al. (1995) suggest that values
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50, see below) or number of alleles since equilibrium (see, for instance, the human data set analyzed). Loci
with different numbers of alleles can also be used.is reached more quickly.

For each run 10,000 points were collected for all pa- To summarize the principle of our approach, we used
Bayes’ theorem to rewrite the posterior pdf as a functionrameters of the model (i.e., 1 point every 5 steps). Fol-

lowing Beaumont (1999), the first 1000 points (the of a prior and a likelihood. The likelihood was estimated
at specific values of the parameter space using Griffiths“burn-in”) were discarded from the analysis and the

9000 remaining points were used for the convergence and Tavaré’s algorithm and a MCMC was run to obtain
samples from the whole distribution. Finally, we usedtest and to approximate the likelihood distributions.

For the multiple-loci and the human data sets longer simulated data sets to test the accuracy of the method.
runs were used (see below).

Unless otherwise stated, all statistical analyses were
RESULTS

performed using the R language (Ihaka and Gentle-
man 1996). The likelihood curves were estimated using Estimation of admixture proportions from single-

locus data: Figure 3 represents the results obtained forthe program Locfit (Loader 1996) as implemented in
the locfit package for R (v. 1.0). The convergence diag- the 20 loci of the 10-allele simulations. It shows the

effect of the sample size and t i on the estimation of thenostics used were performed using the coda package
(v. 0.4-7) as implemented for R (ported by S. Plummer admixture parameter p 1. The results are also summa-

rized in Table 1 while those of the 2-allele simulationson the basis of the CODA package by Best et al. 1995).
Simulating according to the model: To test the are summarized in Table 2. The numbers given in both

tables represent the averages of the medians of each ofmethod, we simulated data sets according to the model
following a coalescent methodology. The two ancestral the pdf’s of the independent loci and the width of the

95% ETPI across the 20 loci.allele frequency distributions, x 1 and x 2, of the parental
populations were simulated from two independent flat For all sample sizes and numbers of alleles, the pdf’s

widen as the time since admixture increases. This isDirichlet distributions. The allele frequency distribu-
tions of the hybrid population xh were then calculated because the genetic information about the admixture

event is gradually eroded by subsequent genetic drift inas p1x 1 � p2x 2. We simulated the number of founders for
the three populations under pure drift using a standard the three populations. For t i � 0.001 (n � 50, 10 alleles)

the average SD across the 20 loci of p 1’s posterior pdf’scoalescent methodology over the intervals t 1, t 2, and t h,
respectively. The genetic types of the founders of the is 0.184 and increases to 0.198 for t i � 0.01 and to 0.222

for t i � 0.1. The 95% ETPI averaged across loci can bethree populations were then sampled from x 1, x 2, and
xh. For each of the populations, a lineage was chosen rather large and ranges from 0.71 to 0.81 as t i goes from

0.001 to 0.1 (for the n � 50, 10-allele case, Table 1).randomly and duplicated until the sample size was
reached. The output of these simulations was fed into This indicates that the number of values that can be

regarded as unlikely is in fact limited when only 1 locusa program implementing our method. Because of the
huge amount of calculations involved by MCMC meth- is used (�20–30% of the p 1 values).

The effect of increasing sample size can be seen byods we had to limit the parameter combinations that
could be analyzed. All simulations were thus performed comparing the left and right sides of Figure 3 and Tables

1 and 2. For t i � 0.001 the average width of the 95%with p 1 � 0.3 and by considering the same sample size
for the three populations. However, the effect of sample ETPI decreases from 0.71 to 0.56 and the average SD

from 0.184 to 0.144 when the sample size goes from 50size was investigated by using two different sample sizes
(n � 50 and n � 200; i.e., 150 and 600 genes from the to 200. For n � 200 the 95% ETPI reaches a value �0.70

and the average SD becomes 0.184 only for t i somewherethree populations in total, respectively). Three (scaled)
times since admixture were used in the simulations. For between 0.01 and 0.1 (Table 1). In other words, the

precision is higher for n � 200 than for n � 50, evensimplicity, again, the same value was used for the three
t i (i.e., the three populations were of the same size; see, when drift is 10–100 times as large. Note that the effect

of sample size seems particularly strong for small t i val-however, discussion for a test of the effect of dissimilar
sizes). We used t i � 0.001, 0.01, 0.1, which for an effec- ues (95% ETPI of 0.56 vs. 0.70 for t i � 0.001, as opposed

to 0.77 vs. 0.81 for t i � 0.1). It is thus worth increasingtive size of 1000 corresponds to 1, 10, and 100 gen-
erations of drift, respectively. For each parameter the sample size only if t i is 
0.01. This means that, as

drift increases, the amount of information that can becombination 20 independent loci were simulated (i.e.,
corresponding to 20 independent runs of the coalescent extracted about p 1 is quite limited even with large sam-

ples. In such cases, the only solution is to increase theprocess). We also tested the importance of the number
of alleles by using loci with either 2 or 10 alleles. For number of loci (see below).

The most dramatic factor affecting the estimation ofthe 2-allele loci, 10 loci were simulated to reduce the
time of analysis. Note that, for real data sets, there are p 1 seems to be the number of alleles (Figure 4 and Table

2). Two-allele loci seem to provide little information onno limitations whatsoever on the sample sizes. They can
vary from locus to locus and population to population the admixture proportion even for very small values of
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Figure 3.—Posterior pdf ’s of p 1 for the 10-allele case. Allelic distributions for 20 independent loci were simulated and analyzed
using our method. Each curve is the posterior pdf obtained for 1 locus. The vertical dashed lines represent the values of the
parameter with which the data were simulated (p 1 � 0.3). The parameter combinations presented here are (a) n � 50, t i �
0.001; (b) n � 200, t i � 0.001; (c) n � 50, t i � 0.1; (d) n � 200, t i � 0.1.

t i. It is clearly preferable to have a single 10-allele locus should be used with caution. Even though these values
indicate that the method is reliable (the estimates of p 1after 100 times more generations of drift than one bial-

lelic locus. With 2-allele loci it is practically impossible are very close to the real value for both t i � 0.001 and
0.01 and differ only moderately for t i � 0.1), someto exclude any value of p 1 as can be seen from the 95%

ETPIs (Table 2), which cover nearly 95% of the possible single-locus pdf’s can point to very different values (Fig-
ure 3). For instance, when drift is important (t i � 0.1),values of p 1 even with n � 200 (i.e., as one would expect

if there were no data). as many as 11 of the 20 pdf’s had a median �0.5, 6 of
which were �0.6 and 2 of which were �0.7 (for n � 50).As should be clear from Figures 3 and 4, single point

estimates such as those provided in Tables 1 and 2 For n � 200 there were, respectively, six, three, and two

TABLE 1

Summary statistics of the pdf ’s for p1, t1, t2, and t h for the 10-allele case

n � 50 n � 200

p1 t1 t2 t h p1 t1 t2 t h

ti � 0.001 Median 0.37 0.041 0.031 0.020 0.29 0.022 0.013 0.008
Width 95% 0.71 0.177 0.142 0.097 0.56 0.099 0.069 0.049

ti � 0.01 Median 0.40 0.046 0.035 0.026 0.28 0.036 0.025 0.017
Width 95% 0.75 0.183 0.150 0.114 0.63 0.135 0.102 0.081

ti � 0.1 Median 0.50 0.101 0.120 0.126 0.44 0.132 0.095 0.097
Width 95% 0.81 0.337 0.415 0.337 0.78 0.396 0.282 0.233

For each parameter, we provide the mean across the 20 loci of the single-locus medians and width of the
95% ETPI.
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TABLE 2

Summary statistics of the pdf ’s for p1, t1, t2, and t h for the two-allele case

n � 50 n � 200

p1 t1 t 2 th p1 t1 t2 t h

ti � 0.001 Median 0.49 0.697 0.697 0.633 0.49 0.677 0.663 0.631
Width 95% 0.94 3.719 3.631 3.552 0.94 3.601 3.570 3.582

ti � 0.01 Median 0.49 0.657 0.651 0.633 0.50 0.655 0.685 0.613
Width 95% 0.95 3.564 3.535 3.153 0.95 3.539 3.657 3.485

ti � 0.1 Median 0.50 0.670 0.733 0.692 0.49 0.723 0.668 0.633
Width 95% 0.95 3.649 3.661 3.525 0.94 3.596 3.574 3.512

For each parameter, we give the mean across the 10 loci of the single-locus medians and width of the 95%
ETPI.

loci. Clearly, the whole distribution or the 95% ETPI for the corresponding t i. In practice this is easily over-
come by introducing a prior on the distribution of theshould be used in place of the point estimates for p 1.

When drift increases, it is possible for at least one of corresponding t i. We come back to this point in the
analysis of the human data set. We observed this effectthe populations to become fixed for one allele. In such

cases the absence of polymorphism means that the cor- in the two-allele case for a few loci (1 locus for n � 200
and 7 loci for n � 50). As a consequence, the averagesresponding population had either a very small size or

a very large T. As a result large values of t i become presented take into account only the parameters for
equally likely and the MCMC cannot reach equilibrium which a posterior pdf was available (i.e., between 7 and

10 loci depending on the parameter combination).
Estimation of time since admixture from single-locus

data: Figure 5 shows the effect of drift on the estimation
of t h. As for p 1, the pdf’s 95% ETPIs increase as t i in-
creases, reaching values �0.3–0.4 for t i � 0.1 (in the
10-allele case, Table 1) and even 3.5 for the 2-allele
cases (Table 2). In the 10-allele cases, large samples
(n � 200) provide more information than smaller ones
(n � 50) even when drift is 10 times as large. However,
we do not observe a greater effect of the sample size
for small t i, which is similar to that observed for p 1.
Note that in the 2-allele cases, where the amount of
information is very limited, increasing the sample size
has virtually no effect (Table 2) and we therefore focus
on the 10-allele cases.

Another difference from p 1 pdf’s is that the median
is a rather poor point estimator of t i for small values of
t i whereas it is reasonable for t i � 0.1 (Table 1). It is
possible that because the pdf’s of the t i are highly
skewed toward zero, the maximum-likelihood estimate
(MLE) should be preferred. However, regardless of the
choice of a point estimator, the distributions are very
wide: the 95% ETPIs are of the same order of magnitude
for all t i’s and are therefore more than two orders of
magnitude larger than the real t i value for t i � 0.001.
The simplest solution is probably to follow the full-likeli-
hood approach and consider the whole distribution
rather than point estimates. Indeed, the pdf’s obtained
for t i � 0.001 and t i � 0.1 are clearly different (Figure
5) even though summary statistics miss the differences.

Figure 4.—Posterior pdf ’s of p 1 and t h for the two-allele Even if one uses the whole distribution one may won-case. Ten independent loci were used in the two-allele case
der why these 95% intervals are so large and similar for(see text). (a) pi’s pdf for n � 200, t i � 0.001; (b) t h’s pdf for

n � 200, t i � 0.001. t i � 0.001 and 0.01. A possible reason is that, for small
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step of the MCMC. In other words, loci are assumed to
be independent.

Figure 6a shows the three pdf’s obtained from the
five-loci data together (represented by the solid lines).
For comparison, the five single-locus pdf’s obtained for
t i � 0.001 are represented by dashed lines. The increase
in information is such that it is clearly better to use five
loci than one locus even when the drift is �100 times
as large. Indeed, the 95% ETPI of the five single-locus
pdf’s varies between 0.58 and 0.74 for p 1 whereas it is
0.23, 0.27, and 0.47 when t i � 0.001, 0.01, and 0.1,
respectively. In other words, the uncertainty on the real
value of p 1 is divided by 2 to 3 depending on whether
the amount of drift is equal or 10 times larger. Even
when drift is 100 times larger it is still better to have
five loci than one locus. To put this into perspective,
in a population whose effective size is 1000, admixture
will be better estimated with five loci after 100 genera-
tions of drift than it would have been with one locus
such as mitochondrial DNA just one generation after
the admixture event. The effect on t i is even larger with
a reduction of the 95% ETPI by a factor 3 to 5. Figure
6a also shows another solid line, which was obtained
using the information from five biallelic loci together
for t i � 0.001. Clearly, the pdf is not distinguishable
from the pdf’s obtained for single loci having 10 alleles.
This indicates that biallelic loci such as allozyme loci
can provide reasonable amounts of information on ad-

Figure 5.—Posterior pdfs of t h for the 10-allele case. Each mixture events when they are used jointly. If, as appears
curve is the posterior pdf obtained for one locus. The following here, five biallelic loci are approximately equivalent to
parameter combinations were used: (a) n � 200, t i � 0.001; one 10-allele locus, then studies using 40 allozymes such(b) n � 200, t i � 0.1.

as those produced in the last decades might be compara-
ble to studies currently using 5–10 microsatellites. This
comparison is certainly very rough, but shows that pre-t i values, the effect of sampling is no longer negligible

as compared to drift. Indeed, in the 10-allele cases, when cise estimates of admixture proportions can be esti-
mated with very easily obtained genetic markers.n � 200 the width of the 95% ETPI is much more

reduced for small t i’s than when n � 50 (Table 1). Thus, Figure 6b shows the apparently flat distributions ob-
tained with single-locus data for t i � 0.001. The distribu-increasing the sample size does provide information on

the t i’s even if it does not have a great effect on p 1. Note tion for five loci (solid line) shows an improvement but
apart from pointing toward low values of t i the pdf isthat pdf’s for t 1 are usually larger than those for t 2,

simply because p 1 
 0.5 (i.e., there is more genetic still flat. As was said earlier, information on the amount
of drift is limited because of the inherent stochasticinformation on parental population 2). Even though

reasonable amounts of information can be extracted behavior of the coalescent and of other sources of varia-
tion. Note that the appearance of flatness is increasedfrom single-locus data, it appears that this is true when

the admixture event is recent and both the sample size by the scale used to represent the six curves (see Figure
2b where the t i’s are represented on another scale).and number of alleles are large.

Estimation of parameter values from multilocus data: It might be thought that a convenient way of combin-
ing the information across loci would be to multiplyMultilocus estimation was performed for the 10-allele

case using the data from 5 loci together. This was done the posterior pdf’s across loci (instead of running the
multiple loci data) and then renormalizing. However,for one sample size (n � 50) and three values of t i,

namely 0.001, 0.01, and 0.1. We used the data from these pdf’s are marginals and the correct procedure
would be to multiply the full pdf (i.e., across all parame-the first 5 independent loci analyzed for the parameter

combination (i.e., 5 of the 20 loci represented in Figure ters) and then take the marginal. Using the full pdf
from the n independent loci is impractical because of3, a and c, respectively) to compare the single- and

multiple-locus results. The likelihood for multiple loci the very high dimensional density estimation that would
be involved. Therefore, it is necessary to run the MCMCis estimated using Griffiths and Tavaré’s algorithm by

multiplying the likelihoods for individual loci at each simulations with all loci simultaneously. We found that
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Figure 6.—Multiple-locus analysis: multiple-vs.
single-locus pdf ’s. The solid lines represent the
pdf ’s obtained with the five loci. The dashed lines
represent the five pdf ’s obtained for the five inde-
pendent loci for t i � 0.001.

with multiple loci, the MCMC runs take longer to con- simulated and analyzed. Figure 7 shows some of these
results for p 1 and t h. Even though the number of lociverge than expected on the basis of the number of loci.

For instance, we ran the five-loci data for 350,000 instead analyzed is limited, a number of features are apparent.
First, the precision on p 1 (Figure 7, a and c) seems toof 250,000 steps. Even though multiple-loci data take

longer to analyze, the data produced justify this extra be mostly dependent on the population that has drifted
most (i.e., the largest value of t i) whether it is the hybridanalysis time. Also, when only single-locus data are avail-

able the whole pdf should be used. (Figure 7a) or parental (Figure 7c) population. Indeed
the 95% ETPI averaged across the 3 loci is 0.68 for t h �Effect of dissimilar sizes: Even though the present

method does not require the populations to have the 0.01 and 0.81 for t h � 0.1. These values are within the
values observed for the 20 loci when the three t i’s weresame size, all previous data sets were simulated under

this assumption (the three t i were always equal, see equal to 0.01 and 0.1, respectively (Table 1). Second,
Figure 7, b and d shows that when there is a 100-foldmethods). It is necessary to test the method when the

parental and hybrid populations have been subject to ratio between t h and both t 1 and t 2 the posterior pdf’s
become clearly different. When the ratio is 10 then thedissimilar amounts of drift and assess the effect on the

estimation of the parameters. To do this we simulated difference in the posterior pdf’s is not as obvious and
would certainly require multilocus or large sample datadata sets where the two parental populations were always

of the same size and the hybrid was either 10–100 times to be visible. This is because the pdf’s on t i are wide
even for small t i’s as was shown before (Figure 5 andsmaller (t 1 � t 2 � 0.001, t h � 0.01 or 0.1) or larger

(t h � 0.001 and t 1 � t 2 � 0.01 or 0.1). For each of the Table 1). Third, a comparison of Figure 7, a and c
indicates that the pdf’s for p 1 are thinner when thefour parameter combinations, 3 independent loci were
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Figure 7.—Posterior pdf ’s when the hybrid
and parental populations have different sizes.
Large hybrid (c and d) cases correspond to simula-
tions where t h � 0.001 (t 1 and t 2 vary), while Small
hybrid (a and b) cases correspond to simulations
where t 1 � t 2 � 0.001 (and t h varies). (a) The
three solid lines represent the pdf ’s of p 1 for three
independent loci for which t h � 0.01 while the
three dashed lines correspond to t h � 0.1; (b)
the three solid lines are the pdf ’s of t h for three
independent loci simulated with t h � 0.01 while
the dashed lines correspond to t h � 0.1; (c) the
three pdf ’s of p 1 for t 1 � t 2 � 0.01 (solid lines)
and t 1 � t 2 � 0.1 (dashed lines); (d) as in b but
showing the three pdf ’s of t 1 and t 2 for t h � 0.01
(solid lines) and t h � 0.1 (dashed lines).

hybrid is subject to little drift than when it is the parental We applied the method to the Jamaican sample be-
cause it is more likely to fit our model than the otherpopulations that are subject to little drift. This is surpris-

ing because in our simulations two out of three popula- samples. The allele frequencies in the three populations
are given in Table 2 (average sample size: Europeans,tions experience large amounts of drift in the “large

hybrid” cases instead of only one in the “small hybrid” n � 292; Africans, n � 388; Jamaicans, n � 186 chromo-
somes; Table 3). We ran the data for the nine locicases.
independently first (for 50,000 steps) to check for loci
that could have a very different behavior, perhaps indi-

APPLICATION TO A HUMAN DATA SET
cating selection. Then we ran the data for the nine loci
together for 300,000 steps. To check for convergence,We applied the method to a data set published by

Parra et al. (1998). They estimated admixture propor- we ran the chain six times, from different starting points.
We also ran one “long” chain for 600,000 steps. Thetions of European and African genes in African-Amer-

ican populations from the United States and from first 50,000 steps of each chain (100,000 for the long
one) were discarded and the analysis was done with theJamaica using the methods of Long (1991) and Chak-

raborty (1975). Nine nuclear loci were used (APO, rest of the points after thinning, resulting in 50,000
points per run (100,000 for the long run). Each multilo-AT3-ID, GC, FY-null, ICAM-1, LPL, OCA2, RB2300, and

Sb19.3, most of which are restriction site polymor- cus run took �1 week on a Pentium 500 Mhz under
Linux.phisms; see Parra et al. 1998 for details). All were bial-

lelic with the exception of GC, which was triallelic. The The single-locus data analysis was performed for all
loci; but for two loci (FY-null and ICAM), at least onefrequencies in the parental populations were obtained

by pulling together three European (England, Ger- parental population was fixed for one of the alleles
(Table 3). The absence of polymorphism despite themany, and Ireland) and three African (one from Central

African Republic, two from Nigeria) samples, respec- large sample sizes means the data are as likely to have
been generated by any large value of t i and the MCMCtively (Parra et al. 1998).
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TABLE 3

Summary of the human data set

APO ATIII FY-null ICAM LPL OCA RB2300 Sb 19.3 GC n

Europe a 294 92 228 302 146 249 94 289 31
b 24 230 0 0 168 71 222 29 118
c 0 0 0 0 0 0 0 0 45
Sum 318 322 228 302 314 320 316 318 194 292.4
HET 0.14 0.41 0 0 0.5 0.35 0.42 0.17 0.55
Fst 0.04 0 NA NA 0.01 0.03 �0.01 �0.1 0.01

Africa a 182 344 0 284 385 40 359 168 302
b 212 50 382 100 9 354 29 226 29
c 0 0 0 0 0 0 0 0 33
Sum 394 394 382 384 394 394 388 394 364 387.6
HET 0.5 0.22 0 0.39 0.04 0.18 0.14 0.49 0.3
Fst 0.01 0 NA 0.05 �0.13 0.04 �0.07 0.02 �0.02

Jamaica a 95 151 12 138 174 17 160 97 147
b 91 35 174 48 12 169 24 89 21
c 0 0 0 0 0 0 0 0 18
Sum 186 186 186 186 186 186 184 186 186 185.8
HET 0.5 0.31 0.12 0.38 0.12 0.17 0.23 0.5 0.35

The absolute frequencies of one, two, or three alleles (a, b, c) are given for each locus. HET is the expected heterozygosity
for each locus in each sample. n is the average sample size. Fst measures the differentiation between the different samples of the
same continent and was estimated as Fst � {HT � (RHi)/ns}/HT, where ns is the number of samples, Hi is the expected heterozygosity
within sample i, and HT is the total heterozygosity. This estimator is not unbiased but gives an idea of the amount of differentiation
between samples within continents.

will not reach equilibrium for the corresponding t i’s, in the estimates are taken into account. Not all of these
factors of variation are taken into account by the twowhich move to larger and larger values. Practically, one

can introduce a prior on the distribution of t i during other methods. This explains why our SD is larger than
theirs. This also means that these methods underesti-the analysis (a possibility could be to use a flat prior

between 0 and some reasonable value such as t i � 1 or mate the true variance and therefore provide the user
with a misleading impression of precision. We are cur-10) and then use the marginals of the other parameters

of interest. A simpler solution is to use directly the rently testing different methods of admixture estimation
(including that of Long) on simulated data sets andmarginals obtained from the run. Note that this situa-

tion disappears when all loci are analyzed together be- find that our method usually performs best (lower mean
square error and more accurate interval estimation; L.cause large t i’s become unlikely. The seven remaining

loci showed similar results, with GC, the three-alleles Chikhi, R. A. Nichols, M. W. Bruford and M. A.
Beaumont, unpublished results).locus, showing thinner and slightly shifted pdf’s with

regard to the others (not shown). Therefore, our results, while supporting the point
estimates given by Parra et al. (1998), suggest that theWhen all loci are used together the estimates of ad-

mixture proportions in the Jamaican sample are very true value of admixture may be within wider bounds
(95% between 1.9 and 14.1%) than suggested by thesimilar to those obtained by Parra et al. (1998) using

Long’s (1991) and Chakraborty’s (1975) methods, use of Long’s and Chakraborty’s methods. McKeigue
et al. (2000) developed a Bayesian approach to estimatepointing to an approximate value of p 1 �7% (Figure

8a; see also McKeigue et al. 2000). However, a look at individual admixture proportions and applied it to the
same data set, estimating that the 95% ETPI for thethe standard deviations obtained with the three meth-

ods shows very different results, i.e., 0.2% (Chakra- Jamaican population was of 6%, that is, larger than that
of Long but smaller than ours. Note that McKeigue etborty), 1.2% (Long), and 3.0% (our method). Our

method seems to indicate a much greater uncertainty al. (2000) used 10 loci instead of the 9 we used, which
makes the comparison difficult.on the true value of p 1 than the two others.

By using a Bayesian approach, we obtain estimates Figure 8 shows the pdf’s obtained for p 1 and t h in the
European, African, and Jamaican populations, respec-that integrate across all possible gene frequency distri-

butions in the parental populations. The genealogical tively. The most striking result is the fact that t h’s pdf
indicates much smaller values for the Jamaican (95%approach allows us to take explicitly into account both

drift in the three populations and the sampling process. ETPI: 0.00032–0.05243) as compared to both the Afri-
can (95% ETPI: 0.00068–0.08560) and particularly Eu-As a consequence all factors that contribute to variance
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plain why the Jamaican population seems to have the
largest effective size. However, the fact that three other
methods used give similar values for p 1 indicates that
this particular assumption should not be problematic.
Indeed, the two methods used by Parra et al. (1998)
and that of McKeigue et al. (2000) do not make any
assumption on the number of admixture events and the
admixture level could have been reached by constant
gene flow as well.

In admixture studies, the choice of the parental popu-
lations is often crucial. In most cases the exact parental
populations cannot be identified with certainty (in fact
it may not even be clear whether a “hybrid” population
is really admixed). In the present case, the Jamaican
population is admixed and the parental populations are
known to be European and African. Any pair of samples
from both continents would be as good as any other if
the level of population differentiation within continents
were low. That is unlikely to be the case, and Parra et
al. (1998) were aware of this problem. To circumvent
it, they used a collection of samples from different areas
from both Europe and Africa and assumed that the
differentiation with other samples would be negligible.
This assumption was based on the fact that the different
samples they used within each continent were not highly
differentiated. Indeed, the Fst estimates we find are negli-
gible (Table 3). However, our analysis indicates that
the real ancestral parental populations may have beenFigure 8.—Human data set: admixture in the Jamaican

population. For each parameter, the pdf ’s obtained using misrepresented by present-day parental population sam-
both the long run and the combined sample of the six runs are ples. This is indirectly confirmed by McKeigue et al.
shown. In most cases the curves are nearly indistinguishable, (2000) who proposed a test to detect misspecification
indicating that equilibrium is reached. (a) pdf of p 1 (European

of ancestry-specific allele frequencies. They applied itcontribution to the Jamaican population); (b) pdf ’s of the t i
to the data of Parra et al. (1998) for four of the Afro-for the Jamaican, African, and European populations.
American samples (but not to the Jamaican sample)
and found significant results for AT3-ID, OCA2, and
GC. McKeigue et al. (2000) were not able to distinguishropean (95% ETPI: 0.04917–0.67681) populations.
whether it is the African-specific frequencies, the Euro-Given the inverse relationship between t i and the size
pean-specific frequencies, or both that are misspecified.of the populations, this result is the opposite to what
A priori Africa is most likely to be misrepresented sinceone would expect. This can be interpreted in different
it is the continent where the greatest amount of geneticways. First, one could observe that the distributions of
differentiation is observed among human populations,the t i overlap and therefore may not necessarily indicate
and only samples from Nigeria and the Central Africandifferent effective population sizes. This interpretation
Republic were used. Also, as noted by Parra et al. (1998)is not satisfactory because the overlap is very limited at
Angola contributed as much as the Bight of Biaffraleast between the Jamaican and the European popula-
(currently Nigeria and Cameroon) into the North Ameri-tions. This can be tested by looking at the joint distribu-
can mainland (25% each, see Curtin 1969 in Parra ettion of the three pairs of t i’s. We find indeed that t 1 �
al. 1998). Considering the geographic distance betweent h (P � 0.0035) and t 1 � t 2 (P � 0.0134) whereas there
Angola and Nigeria it should be expected that the sam-is no significant difference between t h and t 2. Also, we
ples used by Parra et al. (1998) may not represent theshowed with simulated data sets that clear differences
original variability of the ancestral populations. A similarin the t i’s pdf’s appear only when the differences are
argument could be made for the European samples,large (see Figure 7, b and d).
which are all Northern European, even though theAnother interpretation is that the data were not gen-
amount of differentiation is more limited than in Africa.erated according to the model. A number of assump-

A posteriori the data point to a larger misrepresentationtions of the model are certainly not met. One could
of European gene frequencies than African. A likelyargue that gene flow from European to Jamaican has

taken place during the last 200 years and this may ex- explanation is that, if only some slave owners contrib-



1360 L. Chikhi, M. W. Bruford and M. A. Beaumont

uted disproportionately to the Jamaican gene pool, the cies) that affect the estimation of the parameters. It also
allows for the populations to have different sizes andpresent-day European sample would appear to have un-

dergone a greater degree of drift from the ancestral therefore experience different amounts of drift (Thomp-
son 1973 also allows for different effective sizes). Also,population. Indeed, taking a sample representing En-
it is the first method that provides an estimation of thegland, Ireland, and Germany may represent more vari-
time (scaled by the population size) since the admixtureability than there really was in the more limited number
event.of European ancestors of Jamaicans.

It is important to note, though, that two importantIn conclusion, our method indicates that the Euro-
sources of variation were not taken into account by ourpean samples used, and perhaps the African samples as
method: gene flow and mutations. Only Bertorelle andwell, are unlikely to be representative of the parental
Excoffier’s method considers the latter. The introduc-populations of the Jamaican population. The effect on
tion of mutations to our model is theoretically possiblethe final admixture estimate is difficult to predict. One
(Griffiths and Tavaré 1994; Nielsen 1997; Beau-way to test this is by using the information that is cur-
mont 1999) but would slow the estimation of the likeli-rently available on the geographic origin of the African
hood enormously. In fact, Stephens and Donnellyslaves and European slave owners who settled in Ja-
(2000) recently showed that when mutations are added,maica. Samples should then be obtained from these
the choice of the IS function can be critical. In particularareas in proportion to their known contributions. Parra
they give a new IS function, which, when the mutationet al. (1998) analyzed their data in this way, using as many
rate is high, can be typically orders of magnitude quickersamples as possible. The robustness of these estimates
and more accurate than Griffiths and Tavaré’s. Clearly,should be checked by excluding the samples of one or
the lack of mutations in our model can be seen as amore of the areas alternatively. Although tedious, this
limitation. Indeed, when any of the t i is large, mutationslast step appears very necessary, given the uncertainty
may not be negligible for some markers if the popula-of admixture estimates and their importance in epide-
tion size is large (indeed, t i � T/Ni). However, for smallmiological studies, to cite one example.
populations, mutations will be negligible even for large
t i’s. Therefore, the method should be used with caution
when the admixture event occurred over a time scaleDISCUSSION AND CONCLUSION
comparable to 1/�, where � is the mutation rate of the

A number of methods have been developed to esti- marker used. Our aim in this article was to test the effect
mate admixture proportions since Bernstein’s (1931) of a number of important factors (i.e., the number of
seminal paper (see review by Chakraborty 1986). Most alleles, loci, and varying sample and effective population
of them usually neglect stochastic effects apart from the sizes). The maximum amount of drift simulated was 0.1,
sampling of the hybrid population. Exceptions include which is much smaller than the expected fixation time of
the early work of Thompson (1973), who introduces 2. Note that other available methods take into account
drift in the estimation of the population frequencies, neither mutations (apart from Bertorelle and Excof-
or Long (1991), who takes into account sampling error fier’s) nor drift in all populations. Also, the advantage
in all populations but drift only in the hybrid popula- of considering pure drift is that we make no assumption
tion. Recently, Bertorelle and Excoffier (1998) in- on the mutation model that generated the variation
troduced a number of improvements by (i) explicitly observed in the ancestral parental populations. The
parameterizing the history of the parental populations method can therefore be applied to any type of marker.
prior to the admixture event and (ii) using molecular It is clear that gene flow will also affect the estimates
information (i.e., genetic differences between alleles of admixture. Clearly, our method should be used only
and not only allele frequency information). Recently when there are good reasons to believe that gene flow
also, McKeigue et al. (2000) developed a Bayesian was limited in comparison to the original admixture
method that allows the estimation of admixture for each event (see Bertorelle and Excoffier 1998). Practi-
individual and the distribution of individual admixture cally, one can argue, as noted by Chakraborty and oth-
in the population. This method does not take a genea- ers, that the admixture proportion estimated by most
logical approach, does not consider drift, and is cur- methods is in fact the result of the cumulative effect of
rently limited to biallelic loci. However, it could be ex- gene flow across generations. It is probable that this will
tended to multiple-allele loci easily (McKeigue et al. be the same with our method but since this was not
2000) and could also take into account some stochas- tested thoroughly, admixture estimates should be used
ticity in the ancestry-specific allele frequencies within with care when they could be the result of continuous
the present-day admixed population (P. M. McKeigue, gene flow. Other methods that estimate gene flow should
personal communication). then be used instead (e.g., Beerli and Felsenstein 1999).

The method presented here takes into account most Another source of error in the estimation of admix-
sources of variation (sampling and drift in all popula- ture proportions is the problem of nonrepresentative

sampling. As for gene flow, effort should be made totions and uncertainty over the parental allelic frequen-
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Having identified some of the weaknesses that may
impair our method, it should be clear, though, that
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